
Requirements, Testing, and Metrics

Linda H. Rosenberg, PhD Theodore F. Hammer Lenore L. Huffman
Unisys/GSFC NASA GSFC Unisys/GSFC
301-286-0087 301-286-7475 301-286-0099

Linda.H.Rosenberg@pop300.gsfc.nasa.gov thammer@pop300.gsfc.nasa.gov Lhuffman@pop300.gsfc.nasa.gov

Key Words: Testing, Requirements, Metrics

ABSTRACT

The criticality of correct, complete, testable requirements is a fundamental tenet of software engineering.
Also critical is complete requirements based testing of the final product. Modern tools for managing requirements
allow new metrics to be used in support of both of these critical processes. Using these tools, potential problems
with the quality of the requirements and the test plan can be identified early in the life cycle. Some of these quality
factors include: ambiguous or incomplete requirements, poorly designed requirements databases, excessive or
insufficient test cases, and incomplete linkage of tests to requirements. This paper discusses how metrics can be
used to evaluate the quality of the requirements and test to avoid problems later.

Requirements management and requirements based testing have always been critical in the implementation
of high quality software systems. Recently, automated tools have become available to support requirements
management. At NASA’s Goddard Space Flight Center (GSFC), automated requirements management tools are
being used on several large projects. The use of these tools opens the door to innovative uses of metrics in
characterizing test plan quality and assessing overall testing risks. In support of these projects, the Software
Assurance Technology Center (SATC) is working to develop and apply a metrics program that utilizes the
information now available through the application of requirements management tools. Metrics based on this
information provides real-time insight into the testing of requirements and these metrics assist the Project Quality
Office in its testing oversight role. This paper discusses three facets of the SATC’s efforts to evaluate the quality of
the requirements and test plan early in the life cycle, thus preventing costly errors and time delays later. Data from
NASA projects are used to support and clarify the concepts discussed.

1. Introduction

The National Aeronautics and Space Agency (NASA) is increasingly reliant on software for the functionality
of the systems it develops and uses. The Agency has recognized the importance of improving the way it develops
software, and has adopted a software strategic plan to guide the improvement process. At NASA’s Goddard Space
Flight Center (GSFC), the Software Assurance Technology Center (SATC) and the project Quality Assurance Office
are working together to develop and apply a metrics program that utilizes the information available in the
requirements phase of the software development life cycle. Metrics based on this information provides insight into
the testing of requirements; this information assists the Quality Assurance Office in its project oversight role.

Requirements development and management have always been critical in the implementation of software
systems—engineers are unable to build what analysts can’t define. Recently, automated tools have become available
to support requirements management. The use of these tools not only provides support in the definition and tracing
of requirements, but it also opens the door to effective use of metrics in characterizing and assessing testing.
Metrics are important because of the benefits associated with early detection and correction of problems with
requirements. Problems that are not found until testing are at least 14 times more costly to fix than if the problem
was found in the requirement phase.[2]

The first group of testing metrics activities that will be discussed involve the development of a tool and its
application early in the life cycle in order to assess the quality of requirements. This paper describes application of

the Automated Requirements Measurement (ARM) tool. ARM parses the text of the requirements into identifiable
units in order to evaluate potential words or phrases that may affect their testability. Because both the software
acquirer and the software provider must understand and contractually agree to the requirements, specifications are
usually written in natural language. The use of natural language to prescribe complex, dynamic systems has at least
two severe problems: ambiguity and inaccuracy. Many words and phrases have dual meanings which can be altered
by the context in which they are used. Defining a large, multi-dimensional capability within the limitations imposed
by the two dimensional structure of a document can obscure the relationships between individual groups of
requirements.

 Once requirements are written, methods for ensuring that the system contains the functionality specified
must be developed. The next group of testing metrics activities we investigate relate to the test plan links between
test cases and the requirements. Using NASA project data we will look at the linkage of the requirements, the
relationship between unique requirements and unique tests, and the ratios of test to requirement links. In this section
of the paper we discuss three efforts to evaluate the quality of the test plan while still in the requirements phase.

And finally, this paper investigates the quality of the requirements management database schema as it
relates to cleanliness of data and the ease with which requirement and testing metrics can be obtained. In the
preparation of the database that houses the requirements and tests, both the requirement segment and the test
segment must be designed with the identical schema design philosophies; this to enable evaluation of the test plan
links to requirements as they are entered into the database. This paper briefly discusses a requirements database
schema that supports comprehensive evaluation of requirements driven testing.

There are no published or industry guidelines or standards for these testing metrics—intuitive
interpretations, based on experience and supported by project feedback, are used in this paper. NASA project
management has reacted favorably to these metrics and has used the analysis results to mitigate perceived risks. The
SATC continues working on methods to mathematically validate the intuitive guidelines. The objective is to assist
project management in producing high-quality requirements and test plans while identifying and minimizing project
risks.

2. NASA Development Environment

In order to demonstrate how metrics can provide the insight needed to get the requirements right, data from
two large NASA projects will be used. While the projects must remain anonymous, a general understanding of the
development environment is necessary. These projects are implementing large systems in multiple incremental
builds.1 The development of these builds is overlapping, design and coding of the second and third builds having
been started prior to the completion of the first build. Each build adds new functionality to the previous build and
satisfies a further set of requirements.

The definition of requirements for this system started with the formulation of System Level Requirements,
referred to as “Level 1” requirements. These are mission-level requirements for the spacecraft and ground system;
they are at a very high level and rarely, if ever, change. Level 1 requirements then undergo decomposition to
produce Allocated Requirements, called “Level 2”; these requirements are also high-level and change should be
minimal. Project development starts at this requirement level. (We will not discuss Level 1 or Level 2 requirements.)
Level 2 requirements are then divided into subsystems and a further level is derived in greater detail; hence, “Level
3 Derived Requirements.” Each requirement in Level 2 traces to one or more requirements in Level 3. This is a bi-
directional tracing, with Level 3 requirements refocusing into Level 2 requirements. The Detailed Requirements are
found in “Level 4” requirements; these requirements are used to design and code the system. There is also a bi-
directional tracing between Level 3 requirements and Level 4 requirements. To verify the requirement, two stages
of testing are used. System Tests are designed to verify the Level 4 requirements and then Acceptance Tests are to
be used to verify the Level 3 requirements.[8]

1 Various names are used—deliveries, releases, builds—but the term build will be used in this paper.

3. Requirement Specification

The importance of correctly documenting requirements has caused the software industry to produce a
significant number of aids to the creation and management of the requirements specification documents and
individual specifications statements. However very few of these aids assist in evaluating the quality of the
requirements document or the individual specification statements themselves. The SATC has developed a tool to
parse requirements documents. The Automated Requirements Measurement (ARM) software was developed for
scanning a file that contains the text of the requirements specification. During this scan process, it searches each
line of text for specific words and phrases. These search arguments (specific words and phrases) are indicated by
the SATC’s studies to be an indicator of the document’s quality as a specification of requirements. ARM has been
applied to 56 NASA requirement documents. Seven measures were developed, as shown below.

1. Lines of Text - Physical lines of text as a measure of size.
2. Imperatives - Words and phases that command that something must be done or provided. The number

of imperatives is used as a base requirements count.
3. Continuances -Phrases that follow an imperative and introduce the specification of requirements at a

lower level, for a supplemental requirement count.
4. Directives – References provided to figures, tables, or notes.
5. Weak Phrases - Clauses that are apt to cause uncertainty and leave room for multiple interpretations

measure of ambiguity.
6. Incomplete – Statements within the document that have TBD (To be Determined) or TBS (To Be

Supplied).
7. Options - Words that seem to give the developer latitude in satisfying the specifications but can be

ambiguous.

It must be emphasized that the tool does not attempt to assess the correctness of the requirements specified.
It assesses individual specification statements and the vocabulary used to state the requirements; it also has the
capability to assess the structure of the requirements document. [10]

The results of the analysis of the Level 3 and Level 4 requirements are shown in Table 1 with the
comparison to other NASA documents.

 Table 1 : Textual Requirement Analysis

56
 D

O
C

U
M

E
N

T

L
IN

E
S

 O
F

 T
E

X
T

 -
 C

ou
nt

 o
f t

he
 p

hy
si

ca
l

lin
es

 o
f t

ex
t

Im
p

er
at

iv
es

 -
 s

ha
ll,

 m
us

t,
w

ill
, s

ho
ul

d,
 is

re
qu

ire
d

to
, a

re
 a

pp
lic

ab
le

, r
es

po
ns

ib
le

 fo
r

C
o

n
ti

n
u

an
ce

s
 -

 a
s

fo
llo

w
s,

 fo
llo

w
in

g,

lis
te

d,
 in

pa
rt

ic
ul

ar
, s

up
po

rt

D
ir

ec
ti

ve
s

-
fig

ur
e,

 ta
bl

e,
 fo

r
ex

am
pl

e,

no
te

:

W
ea

k
P

h
ra

se
s

-
ad

eq
ua

te
, a

s
ap

pl
ic

ab
le

,

as
 a

pp
ro

pr
ia

te
, a

s
a

ni
ni

m
um

, b
e

ab
le

 to
,

be
 c

ap
ab

le
, e

as
y,

 e
ffe

ct
iv

e,
 n

ot
 li

m
ite

d
to

, i
f

pr
ac

tic
al

In
co

m
p

le
te

 -
 T

B
D

, T
B

S
, T

B
R

O
p

ti
o

n
s

-
ca

n,
 m

ay
, o

pt
io

na
lly

Min im u m 143 25 15 0 0 0 0

M e d i a n 2265 382 183 21 37 7 27

A v e r a g e 4772 682 423 49 70 25 63

M a x i m u m 28459 3896 118 224 4 32 130

Stdev 759 156 99 12 21 20 39

L e v e l 3 F O S 1011 588 577 10 242 1 5

L e v e l 4 F O S 1432 917 289 9 393 2 2

We are especially concerned with the number of weak phrases since the contract is bid using Level 3 and
acceptance testing will be against these requirements. It is also of concern that the number of weak phrases has
increased in Level 4, the requirements used to write the design and code and used in Integration testing.

An easy way to compare Project X with other NASA documents is to normalize by lines of text, shown in
Figure 1.

Figure 1 : Project X Normalized and Compared to NASA Documents

From Figure 1 it can be seen that Project X documents are terse without excess extraneous information and
with few continuances or directives. This is probably a result of the requirements being analyzed from a database as
opposed to a textual document where additional text would be expected. Project X does have a very high number of
weak or ambiguous phrases as discussed previously, but few incomplete and optional phrases.

4. Testing Characterization

 Once requirements are written, methods for ensuring that the system contains the functionality specified
must be developed; this section of the paper discusses three efforts to evaluate testing in the requirements phase. To
validate the requirements, test plans are written that contain multiple test cases; each test case is based on one
system state and tests some functions that are based on a related set of requirements.[8]

 In the total set of test cases, each requirement must be tested at least once, and some requirements will be
tested several times because they are involved in multiple system states in varying scenarios and in different ways.
But as always, time and funding are issues; while each requirement must be comprehensively tested, limited time
and limited budget are always constraints upon writing and running test cases.2 It is important to ensure that each
requirement is adequately, but not excessively, tested. In some cases, the requirements can be grouped together
using criticality to mission success as their common thread; these must be extensively tested. In other cases,
requirements can be identified as low criticality; if a problem occurs, their functionality does not affect mission
success while still achieving successful testing.[1,8,9] In order to ascertain the point at which testing benefits
become marginal, the SATC developed a third set of metrics based on data available in a requirements management
tool using the information design discussed in the previous section.

 These metric analyses use the linking information of the requirements to the tests in three ways. The first is
to verify that each requirement is tested at least once. The next two analyses characterize the depth and breadth of

 2 For simplicity in this paper, we will use the term test case to refer to any type of test for verification and validation
of requirement functionality.

Project X Normalized Compared to NASA Documents

Imperatives Continuances Directives Weak Phrases Incomplete Options

Categories

NASA

Level_3

Level_4

the test plan. It is expected that each requirement will be linked to multiple test cases, and that each test case will test
multiple requirements.[1,8,9] Data from Project Y is used to demonstrate the metrics application and interpretation
in this section.

 4A Test Coverage

 The first objective is to verify that each requirement will be tested; the implication is that if the software
passes the test, the requirement’s functionality is successfully included in the system. This is done by determining
that each requirement is linked to at least one test case.[6] A query such as those shown below would result in data
that could be displayed in a graph shown in Figure 2.

 Query: How many requirements in Level 4 Build 1 are linked to a test case?
 Query: How many requirements in Level 4 Build 2 are linked to a test case?
 Query: How many requirements in Level 4 Build 3 are linked to a test case?

0

500

1000

1500

2000

2500

3000

Build 1 Build 2 Build 3

BUILD

R

eq
u

ir
em

en
ts

Total RQTs
Linked RQTs
Unlinked RQTs

 Figure 2: Level 4 Requirement Linkage to Tests

 Build 1 appears greater than 60% unlinked due to database problems, the database was not created until
after Build 1, hence most of the data from Build 1 was not entered. Build 2 is currently testing Level 4 requirements,
but 40% of the requirements are not linked to any test. This data indicates that there is no way to verify whether the
functionality of 1,000 requirements is included in the system. It may be possible to link some of the requirements to
existing test cases with minimum modification to the test data. If new test cases must be developed, budgetary
problems may be created and the testing schedule must be increased. In all cases, further investigation of the
missing links is warranted.

 For Build 3, just starting the coding phase (coding continues for approximately 10 additional months), only
25% of the requirements are not linked to test cases. This situation needs to be monitored on a monthly basis but is
not one for major concern at this time.

 4B Test Span

 This activity characterizes the test plan and identifies potentially insufficient or excess testing.
Requirements are usually tested by more than one test case, and one test case usually covers more than one
requirement.[6] Since each test costs money and takes time, the obvious questions are how may requirements are
covered by one test, and how many tests cover only one requirement. On the other hand, if requirements are
insufficiently tested, functionality may not be verified. The metrics for this analysis are in two parts because of the
bi-directional linkage between the requirements and tests. Each direction yields different information. Counting the
number of unique tests used for a requirement indicates that requirements at both ends of the graph may have too

much or too little testing. Counting the number of unique requirements tested indicates the exclusivity of the
testing.[3] Due to space limitations, we will demonstrate only one direction - unique requirements per test to identify
excessive or insufficient testing.

 Figure 3 shows an expected profile of unique requirements per test case based on data from NASA
projects [5].

Figure 3 - Test Program Characterization Tests per Requirement

 This profile shows that there is an expectation that there will be a large number of requirements tested by
only one test case, and that there will be some number of requirements that will be tested by a multiple number of
test cases. It is expected that the upper bound of multiple test cases will range in the tens. This makes sense, as
more complicated requirements may require different test cases to thoroughly verify all aspects of the requirement.
However, there is a limit on the number of test cases. As the number of test cases increases the difficulty of
verifying the requirement also increases. This difficulty arises due to the complication in data analysis,
understanding the results of the multiple tests cases, and understanding the impact of multiple test case results on the
verification of the requirement.

 Number of tests per requirements counts the number of unique tests associated with each test. A program
query such as the one below might be used.

 Query: How many requirements are tested by Test A.1? (Acceptance test, Test1)
 Query: How many requirements are tested by Test A.2? (Acceptance test, Test2)
 Query: How many requirements are tested by Test A.3? (Acceptance test, Test3)
 . . .

 The data is then summarized to count the number of unique requirements evaluated by a given test.

 This data was compiled for Build 3 Level 4 requirements and is graphed in Figure 3 with bars. The profile
curve (solid line) was derived to identify outliers - areas where testing may be insufficient or excessive. The X-axis
is the Number of Unique Requirements and the Y-axis the Number of Test Cases.

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Requirements

#
Un
iqu
e
Te
sts

Actual

Expected

2 requirements are tested by
52 unique tests each

37 requirements are
tested by 1 test

Sufficient Testing?

Excessive testing?

 Figure 4: Sufficiency of Testing Plan

 The analysis in Figure 3 shows the dilemma of structuring a test program. A testing criterion is to have a
one to one relationship between tests and requirements. In this way the validation of requirements is isolated to
single tests and so are easily verified. The problem with large systems is that a one to one relationship between tests
and requirements will cause a large test program to be developed that will have a huge number of test cases. It will
be too costly and too time consuming to complete, due to the number of test cases, the amount of test data required,
and the large number of test sessions needed to execute all of the tests. Therefore a balance must be obtained where
a one to one relationship between requirements and test cases is developed for critical requirements, but less critical
requirements are tested in groups based on system states or functional threads.

 4C Test Complexity

 Figure 3 indicates there may be excessive testing scheduled for some Build 3 Level 4 requirements due to
the large tests per requirement ratio seen on the left hand side of the chart. The next step in evaluating the
requirements testing is to investigate the testing magnitude through the complexity of the linkages. One way this
can be done is to look at the number of requirements, the number of linkages, and the number of tests. Recall, each
link is a connection between a requirement and a test. This data presents a third view of the data previously
presented. Figure 4 shows this raw data for Build 2 and Build 3, Level 3 and Level 4 requirements.

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

L e v e l 3 L e v e l 4 L e v e l 3 L e v e l 4

B u i l d 2

RQTs
Links
Tests

 Figure 5: Requirements, Links, and Tests

 Looking at Figure 4, it appears the number of links for Level 3 may be disproportionate. Table 2 shows the
actual ratios.

 Build Level Ratio Links to
Requirements

 Ratio Links to
Tests

 Ratio Requirements
to Tests

 2 3 2 : 1 5 : 1 2 : 1
 3 3 4 : 1 10 : 1 4.5 : 1
 2 4 0.5 : 1 3 : 1 4.5 : 1
 3 4 0.75 : 1 4 : 1 1.25 : 1

 Table 2: Ratio Links to Requirements

 Figure 4 and Table 2 show a number of different perspectives of the test information. First look at the ratio
of the number of links to the number of requirements summarized in Table 2 below. In the Level 3 requirements for
both Build 2 and Build 3, there are at least two links for each requirement. This means that on average, each
requirement is tested by at least two different tests. For Level 4 requirements however, there is less than one link for
each requirement. This indicates there are some requirements that are not linked to any test, hence their
functionality may not be verified.

 Another way of viewing the data is to look at the total number of links to the total number of tests - are
there too many? These ratios are also contained in Table 2. Looking at Level 3 requirements for Build 3, the graph
in Figure 4 is reinforced by the ratios in Table 2, that show a ratio links to tests of 10 to 1. This indicates that
although the number of tests seems adequate for Build 3 (Figure 4), the complexity of the test program is too high;
that is, the linkage between requirements and tests is complex (Table 2).

 As stated, when metrics indicate a potential problem, further investigation is needed. The tentative
conclusion is that the test plan for Build 3 Level 3 requirements is too complex, but the last column in Table 2
indicates the ratio of requirements to tests for Build 3 Level 3 requirements is not out of line. It is likely that the
number of tests is sufficient, but the number of links is excessive and may need to be decreased, thus decreasing the
complexity of the tests. But while the last column in Table 2 resolves one concern, another is raised. Looking at
the ratio of tests per requirement for Build 3 Level 4 requirements, there is a one to one ratio. This indicates a very
large number of tests for this Build and Level, suggesting a potential risk of failing to complete testing within
schedule and budget. These factors may all be pointing to poor test case design, or, they may simply be a lapse in
procedures for requirements and test case management.

 As discussed previously in this paper, there are no guidelines for these metrics since they are in research
infancy; in evaluating the data in Table 2, we were looking for inconsistencies based on experience.

The objective of an effective verification program is to ensure that every requirement is tested, the
implication being that if the system passes the test, the requirement’s functionality in included in the delivered
system [1,3]. An assessment of the traceability of the requirements to test cases is needed. It is expected that a
requirement will be linked to a test case, and may well be linked to more that one test case as shown in Figure 6
[5,6].

Figure 6 - Requirement Verification - Trace to Test Linkage

The important aspect of this analysis is to determine which requirements have not been linked to any test
cases at all.

Figure 7 shows that the traceability of requirements to test cases for Project Y around the CDR time frame
for Build 2. The information was extracted from the requirements management database used in support of the
development effort. The profiles show several problems.

Figure 7 - Requirement Verification Trace to Test

First, the requirements management tool was not used effectively early in the project life cycle. This
explains the poor traceability between the requirements and test cases for Build 1. Secondly, there seems to be a
mix up in the test priorities by the implementer. The test program for Build 3 is further along than that for Build 2,
when it is Build 2 that will be developed and tested before Build 3. Resources may have been inappropriately
allocated to the development of the test program for Build 2. Lastly, the test program for the Level 4 requirements is
behind that for the test program for the Level 3 requirements. Again, this is backwards. The first tests to be
executed will be that for the Level 4 requirements, the system tests, and after that tests for the Level 3 requirements
will be executed, the acceptance tests. An explanation for this problem may be found is a previously presented
metric. Remember the metric showing the push of Level 4 requirement from Build 2 to Build 3. This movement of
requirements from Build 2 to Build 3 may well be the cause of the lack of traceability of requirements to test cases.
The test case developers may be having difficulty in keeping up with the changes in requirements resulting in a
number of requirements in each build without a link to a test case.

5 Requirement Management

The use of tools to aid in the management of requirements has become an important aspect of system
engineering and design. Considering the size and complexity of development efforts, the use of requirements
management tools has become essential. The tools which requirement managers use for automating the requirements
engineering process have reduced the drudgery in maintaining a project’s requirement set and added the benefit of
significant error reduction. Tools also provide capabilities far beyond those obtained from text-based maintenance
and processing of requirements. Requirements management tools are sophisticated and complex – since the nature
of the material for which they are responsible is finely detailed, time-sensitive, highly internally dependent, and can
be continuously changing. Tools that simplify complex tasks require skill and a thorough understanding of their
capabilities if they are to perform effectively over the lifetime of a project [7].

There are many requirement management tools to choose from. These range from simple word processors,
to spreadsheets, to relational databases, to tools designed specifically for the management of requirements such as
DOORS (Quality Systems & Software - Mt. Arlington, NJ) or RTM Requirements Traceability Management
(Integrated Chipware, Inc. - Reston, VA). The key to selecting the appropriate tool is the functionality (See Table 3
for a comparison of tool capabilities) provided and the capability to develop metrics from the data, secondary
contained in the tool.

Table 3 - Requirement Repository Capabilities

 W o r d Spreadsheet Relat ional Requirement

 Processor Database Tool

Document conf ig . mgt X X X

Document preparat ion X X

Funct ion decomposi t ion X X

Report preparat ion X X

Requirement a l locat ion X X X

Requirement conf ig . mgt X X X

Requirement expansion X X

Requirement importa t ion X

Requirement s implif icat ion X

Requirement s torage X X X X

Requirement t raceabil i ty X X

Test coverage/adequacy X X

M etrics X X

The metric capability of the tool is important. It should be noted that most of the metrics presented in this
paper to demonstrate how to do requirements the right way were developed from the data contained in a requirement
management tool. Table 4 shows a comparison of the metric capability associated with the different tools. Clearly
the relational database and requirements management tool provide the capabilities needed to effectively support the
management of requirements.

Table 4 - Requirement Repository metric Capabilities

 The selection of a tool is only part of the equation. A thorough understanding of the tool capabilities and
the management processes that will use the tool is necessary. The tool should not be plugged into the management
processes with no thought as to the impact on the tool capabilities. Adjustments may be needed in the management
processes and employment of the tool to bring about an efficient requirements management process.

 6 Conclusion

It is generally accepted that requirements are the foundation upon which the entire system is built. And that
requirement verification and validation is needed to assure that the functionality representing the requirements has
indeed been delivered. However, all too often requirements are not satisfied, leading to a process of fixing what you
can and accepting the fact that certain functionality will not be there. A better approach is to get the requirements
right the first time, complete, concise and clear, that will provide the implementer a clear blue print with which to
build the system. This is not done by magic but through the application of tools and metric analysis techniques in
the areas of requirement specification, requirement verification and requirement management

 The use of an automated tool to track requirements and their test cases has opened the door to the use of
new requirements and testing measures. The ARM tool can be used to point out requirements that may be
ambiguous or otherwise poorly worded and thus subject to testing problems. Since the data base that contains the
requirements can be repeatedly analyzed, quality trends can be tracked and partial sets of requirements can be
monitored and investigated.

 The same database contains the test data, which allows new measures that characterize a test program in
terms of its structure and complexity, and to assess whether all requirements are verified by test cases. The use of an
automated tool for requirements management is essential for gaining insights not otherwise available. The metrics
presented here were the result of many different attempts to display and use the data. Key to this analysis was access
to the requirement database.

 Based on the work done to date, four conclusions can be reached:

• Requirement metrics assist in identifying potential project risks
• Metrics are available in the requirement phase to assess test plans

• Multiple metrics are needed for comprehensive evaluation
• Metric collection is cheaper, faster and more reliable with requirement management tools

REFERENCES

1. Beiser, B. Software Testing Techniques (1983), Van Nostrand Reinhold Company.
2. Boehm, B. Tutorial: Software Risk Management (1989), IEEE Computer Society Press.
3. Hammer, T., Huffman, L., Wilson, W., Rosenberg, L., Hyatt, L., Requirement Metrics—Value Added in

Proc. Third IEEE International Symposium on Requirements Engineering, (Annapolis MD, January 1997)
IEEE Computer Society Press.

4. Hammer, T., Rosenberg, L., Huffman, L., Hyatt, L., Measuring Requirements Testing in Proc.
International Conference on Software Engineering (Boston MA, May 1997) IEEE Computer Society Press.

5. Kitchenham, Barbara, Pfleeger, Shari Lawrence, Software Quality: The Elusive Target, IEEE Software 13,
1 (January 1996) 12-21.

6. Marconi Systems Technology, RTM User’s Manual (1994).
7. Software Technology Support Center, Software Test Technologies Report (August 1994).
8. Wilson, W., Rosenberg, L., Hyatt, L., Automated Quality Analysis of Natural Language Requirement

Specifications in Proc. Fourteenth Annual Pacific Northwest Software Quality Conference, (Portland OR,
October 1996).

9. Brooks, Frederick P. Jr., No Silver Bullet: Essence and accidents of software engineering, IEEE Computer,
vol. 15, no. 1, April 1987, pp. 10-18.

10. Hammer, T., Huffman, L., Rosenberg, L., Wilson, W., Hyatt, L., “Requirement Metrics for Risk
Identification”, Software Engineering Laboratory Workshop, GSFC, 12/96.

11. NASA, Software Assurance Guidebook, NASA Goddard Space Flight Center Office of Safety, Reliability,
Maintainability, and Quality Assurance, 9/89.

12. Wilson, W., Rosenberg, L., Hyatt, L., “Automated Analysis of Requirement Specifications”, Fourteenth
Annual Pacific Northwest Software Quality Conference, 10/96.

13. Hammer,T., “Measuring Requirement Testing”, 18th International Conference on Software Engineering,
5/97.

14. Hammer,T., “Automated Requirements Management – Beware How You Use Tools”, 19th International
Conference on Software Engineering, 4/98.

15. Hansen, Gary W., Hansen, James V., Database Management and Design, Prentice Hall, 1992.
16. Chen, M., Han, J., Yu, P. “Data Mining: An Overview from a Database Perspective”, IEEE Transactions on

knowledge and Data Engineering, Vol 8, No. 6, 12/96

